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ABSTRACT
The present study is devoted to the modeling of mean flow effects while computing thermoacoustic modes under

the zero Mach number assumption. It is first recalled that the acoustic impedance modelling a compressor or a
turbine must be prescribed under an energetical form instead of the classical acoustic variables. Then we demon-
strate the feasibility to take into account the coupling between acoustic and entropy waves in a zero Mach number
framework to capture a family of low frequency entropic modes. The proposed approach relies on a new Delayed
Entropy Coupled Boundary Condition (DECBC) and proves able to capture a family of Low frequency entropic
mode even though no mean flow term is included into the fluctuating pressure equation.

Nomenclature
A+, A− Amplitudes of forward and backward acoustic waves
Cp Heat capacity per mass unit at fixed pressure
Cv Heat capacity per mass unit at fixed volume
J Total enthalpy
M Mach number
R Reflection coefficient
Z Complex impedance
c Sound celerity
k Wave number
m Mass flow rate
p Static pressure
q Heat release per unit volume

∗Address all correspondence to this author.



s Entropy per mass unit
u Velocity vector
ρ Density
ĝ Complex amplitude of the fluctuating quantity g
DECBC Delayed Entropy Coupled Boundary Condition

Introduction
Lean premixed combustor systems in aero-engines are promising devices to meet the future NOx emission reduction

requirements. However, they are also more prone to combustion instabilities compared to classical combustors [1]. These
oscillations of the flow may lead to many undesirable effects, such as large-amplitude structural vibrations, flame flashback
or blowoff, or an abnormally high temperature of the wall of the combustor. In the best case, the consequences would be a
simple loss of performance or a premature fatigue of materials. In the worst case, a spectacular destruction of the system can
occur. Consequently, there is a need to better understand combustion instabilities and to be able to predict them at the design
level.

Several methods have been developed to study these instabilities, such as low-order methods [2, 3] which solve only
the unidimensional acoustic problems, or at the opposite the Large Eddy Simulation (LES) which solves numerically the
complete flow thanks to the reactive Navier-Stokes equations. As an intermediate, the problem complexity can be reduced
by the derivation of the Linearized Euler Equations (LEE) which neglect viscous effects, or by the derivation of the Helmholtz
equation when neglecting the mean flow motion. Although this last method may be a crude simplification of the problem,
this approach combined with LES proved useful to better understand the structure and nature of the instabilities observed in
academic or industrial burners [4].

Although it is tempting to restrict the study of the behaviour of thermo-acoustic instabilities to only the combustion
chamber, it is however important to take into account the proper acoustic environment of the gas turbine, as for example the
presence of a compressor or a high pressure distributor. Since it is difficult to simulate the whole configuration, a possibility
is to reduce the computational domain to only the flame tube where the mean Mach number is approximatively zero (M = 0)
while the compressor and the turbine are modelled by prescribing appropriate complex valued impedances at the boundaries.

At least two difficulties arise when using a Helmholtz solver (thus assuming M = 0) for the combustion chamber and
boundary impedances to represent the upstream/downstream environment:

• In order to match the zero Mach number assumption used to formulate the thermo-acoustic problem, the impedance
should be defined in theory in a section of the combustion chamber where the Mach number is very small. In practice,
the location of the outlet section is often imposed by geometrical considerations and the effective Mach number at the
boundary is not necessarily very small,

• Three modes of fluctuations can perturb a steady baseline flow [5]: acoustic perturbations propagates at the speed of
sound augmented by the local mean velocity while vortical and entropy perturbations are simply convected by the
mean flow. As a consequence, the zero Mach number assumption necessarily neglect the convection of entropy or
vorticity spots to the downstream. As shown by many authors [6–9], entropy inhomogeneities generate acoustic waves
when accelerated in a mean flow pressure gradient, which is the case when the combustor opens onto a high pressure
distributor. Acoustic waves transmitted through the distributor generate indirect combustion noise, while acoustic waves
travelling back to the flame may generate a low frequency resonant mode called rumble [10, 11].

It has been demonstrated in a previous study [12] that the zero Mach number assumption for the mean flow can lead to
significant errors both in the prediction of the frequency and the growth rate of the thermo-acoustic mode, suggesting that the
two points described above are of major importance. Since accounting for the non zero Mach number terms in the equations
leads to a drastic increase of the problem complexity [13], the aim of this paper is to investigate an alternative approach
where the thermo-acoustic problem in the domain is still solved under the zero Mach number assumption and the coupling
with the convective quantities is modelled through an appropriate downstream boundary condition.

The basic equations are recalled in section 1 while in section 2 the proper way to couple a Helmholtz solver with
an analytical and/or numerical tool for the computation of the upstream/downstream boundary impedance is discussed. In



section 3 we demonstrate the feasibility to take into account the coupling between acoustic and entropy waves in a zero Mach
number framework and to capture a family of low frequency entropic modes. The analysis focuses on the configuration of a
simple tube containing a flame and where a shocked nozzle is located downstream.

1 Mathematical formalism
This study is conducted in the frequency domain, i.e. g′(x, t) = ℜ

{
ĝ(x)e− jωt

}
for any fluctuating quantity; it also

focuses on unidimensional configurations so that only purely longitudinal acoustic and entropy convection effects are present.
Consequently, vorticity perturbations and their interactions with the acoustics are neglected in the remainder of the whole
study.

1.1 Linearized Euler Equations for the eigenvalue problem
For an homogeneous reacting mixture with constant heat capacities Cp and Cv, the linearised harmonic form of conser-

vation equations for mass, momentum and energy in a quasi-1D domain of cross section area S(x) read respectively:

û
∂ρ0

∂x
+ρ0

∂û
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with the linearized state equation and entropy expression:
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Assuming that the unsteady heat release amplitude q̂ is modeled as a linear operator, i.e. q̂ = qρ̂ρ̂+qûû+qŝŝ, Eqs. 1-3 define
an eigenvalue problem M W = jωW where M is :
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qû u0

∂

∂x
+

T
T0

q0

p0
− r

p0
qŝ


(5)

and (ω,W ) the eigenpair, the eigenvector being W = (ρ̂, û, ŝ)T , S the varying area section and T = (γ−1)T0.

1.2 Plane waves in an homogeneous media
In the case of a 1D domain with homogeneous baseline flow, the following expressions can be obtained [14] for the

complex amplitudes:

p̂(x) = A+e jk+x +A−e− jk−x (6)



û(x) =
1

ρ0c0
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where A+ and A− are the amplitudes of the forward and backward propagating acoustic waves, respectively, σ the amplitude
of the forward propagating entropic wave, k = ω/c0 is the acoustic wave number and M the Mach number. It should be noted
that Eq. 8 represents an idealistic situation where the spatial diffusion of entropy spots is neglected. Although this situation
is not supported by previous studies [15], it is judged appropriate for this proof of concept study.

Injecting the above expression of entropy into Eq. 4 leads to
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0
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0
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Eqs. 6, 7 and 11 describe the harmonic small amplitude perturbations in the domain. Relations between complex valued
amplitudes A+, A− and σ are prescribed by boundary conditions and jump relations through the interfaces.

2 Influence of the boundary impedance on thermo-acoustic eigenfrequencies
When studying the acoustic behaviour of a combustor by computing the eigenmodes thanks to a Helmholtz solver, appro-

priate boundary conditions must be used in order to represent the acoustic environment. Upstream/downstream impedances
can be deduced from transfer functions describing the response of acoustic elements to acoustic or entropic perturbations,
either analytically under the compact hypothesis [16] or numerically by solving the LEEs [17]. The impedance should be
defined in a section of the combustion chamber where the Mach number is very small, consistently with the zero Mach num-
ber assumption which is valid when M� L f /La, where L f is the thickness of the reaction zone and La the typical acoustic
wavelength. Since this is not always the case in practice, there is a need to quantify the errors inherent to this practice when
the outlet/inlet Mach number is not very small.

The configuration considered is shown in Fig. 1.a. It consists in two connected tubes of section S1 and S2. The
subscripts 1 and 2 refer to parameters in the left and right tube, respectively. Only isentropic fluctuations are considered (the
inlet boundary condition is s′ = 0 and there is no entropy source within the flow domain).

The eigenmodes of this simple configuration are computed by four different methods to assess the errors made when the
boundary Mach number increases and deduce the proper way to prescribe boundary impedance.

2.1 Method A0: Numerical results from the LEE’s
The LEEs presented in section 1.1 are solved numerically so as to provide a reference solution accounting for mean flow

effects and the complete geometry [12].

2.2 Method A1: Global acoustic model
The forward and backward waves travelling in both tubes lead to four unknown A+

1 , A−1 , A+
2 and A−2 . These waves

are solutions of an homogeneous linear system of equations obtained by requiring that the boundary conditions and jump
relations are fulfilled. The two boundary conditions form a first set of relations between waves amplitudes. A constant



Fig. 1. Configuration A investigated in section 2. Figure (a): the complete geometry is computed. Figure (b): only a part of the tube 1 is

computed while the rest of the domain is modelled through downstream impedance.

mass-flow rate m′1 = 0 is imposed at the intlet x = 0 of the domain, while the outlet at x = L is modelled by an acoustic
open-end, so that p′2 = 0. Introducing the plane wave decomposition of pressure and velocity fluctuations leads to:

A+
1 (1+M1)−A−1 (1−M1) = 0 at x = 0 (12)

A+
2 e jk+2 L +A−2 e− jk−2 L = 0 at x = L (13)

As explained in [14] the jump relations for the section change located at x = l can be expressed by integrating over an
infinitesimal control volume the conservation of mass (Eq. 1) where the time averaged mass flux term has been substracted,
and energy (Eq. 3) as long as the specific stagnation enthalpy within the volume remains invariant. The following set of
equations is then obtained :

[
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One obtains the algebraic system M W = 0 where M is defined as :
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where M+
1 = (1+M1), M−1 = (1−M1), M+

2 = (1+M2), M−2 = (1−M2) and W = (A+
1 ,A

−
1 ,A

+
2 ,A

−
2 )

T . The dispersion
relation is then obtained by requiring the matrix M to be singular, producing the solution of the acoustical problem.



2.3 Method A2: modeling of the section change by an impedance
As shown in Fig. 1.b the computational domain is reduced to the region between the inlet x = 0 where the boundary

condition is still m′1 = 0 and x = lz < l where the impedance Zac is imposed. The algebraic system described at Eq. 16
reduces to:

[
(1+M1) −(1−M1)

(1−Zac)e jk+1 lZ (1+Zac)e− jk−1 lZ

][
A+

1

A−1

]
= 0 (17)

The impedance Zac is defined by

Zac =
1+Rac

1−Rac
(18)

where Rac = A−1 /A+
1 is the coefficient of reflection defined as the ratio between the reflected and the incident wave. The

transfer function of the modeled part of the domain (lz < x < L) can be found by setting A+
1 to unity so as to express A−1 .

After cumbersome but straightforward algebra, Eq. 16 leads to:
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2.4 Method A3: zero Mach number domain
Method A3 is similar to method A2 as described above. The only difference is the use in the computational domain of a

wave number k derived under the zero Mach number assumption instead of k± and M1 is set to zero in Eq. 17. The relation
A+

1 −A−1 = 0 is now imposed at x = 0. Moreover, the expression of the impedance Zac and the reflection coefficient Rac

remains unchanged. Thus, Eq. 17 becomes :

[
1 −1

(1−Zac)e jk1lZ (1+Zac)e− jk1lZ

][
A+

1

A−1

]
= 0 (22)

2.5 Results
Thermodynamic and geometrical parameters used for the computation of eigenmodes are presented in Table 1. The

temperature T1 and pressure P1 are imposed to the computation, while these parameters with the subscript 2 are deduced
from the steady mean flow equations.

Results are presented in Table 2. As expected, comparisons between method A0 and the global acoustical model (method
A1) give very satisfying results. Real and imaginary parts of the frequency of the first eigenmode are both very close when
computed at different inlet Mach number M1. The small but existing difference can be explained by the fact that the length
of the section change between S1 and S2 is not zero in the LEE solver but close to x = 0.5 mm.



Table 1. Thermodynamic and geometrical parameters used in the configuration.

S1 S2 T1 P1 γ r L l lZ

0.05 m2 0.1 m2 300 K 101325 Pa 1.4 287 SI 1 m 0.99 m 0.98 m

Table 2. Results for the first eigenmode with methods A0, A1, A2, A3 with Rac and A3* with Re, for different inlet Mach number M1.

M1 0.0005 0.1

A0 87.154−0.007i 86.37−1.360i

A1 87.233−0.007i 86.367−1.364i

A2 87.233−0.007i 86.367−1.364i

A3 (Rac) 87.233+0.0208i 87.226+4.194i

A3* (Re) 87.233−0.0007i 87.226−1.377i

Comparisons between methods A1 and A2 prove that truncating the computational domain while modeling the unre-
solved part through an impedance gives exactly the same results. Based on this observation, the influence of the zero Mach
number assumption can be isolated. Computations with method A3 are chosen so as to represent the extreme case where
98% of the domain is solved with a zero mean flow. It is obvious that in such configuration the real part of the frequency fM

computed with Mach number effects will be very close to the one ( f0) computed at very low Mach number. As shown in [12]
a relation between frequencies can be found, so that fM ≈ (1−M2) f0. Verification of this relation with results of Table 2 is
rather straightforward. The imaginary parts computed from method A3 suggest that energy is entering into the domain while
the Mach number increases. This observation is in contradiction with results from the reference methods which show that
the first mode is always damped ( fi < 0). The solid line on Fig. 2 shows the modulus evolution of the reflection coefficient
for different inlet Mach numbers M1 (note that |Rac| does not depend on the frequency according to Eq. 19). It is obvious
that non-physical energy growth is generated because the ratio between the reflected wave and the incoming wave is supe-
rior to unity. As explained in [18], |Rac| can exceed unity at a critical Strouhal number where vortical energy is generated
downstream of an abrupt change in the geometry of a pipe. As vorticity is neglected in the present study, another explanation
must be provided.

2.6 Boundary conditions: from a non stationary flow formalism to a zero Mach number formulation
As shown by many authors [6, 19], the classical derivation of acoustic disturbances must be reformulated to take into

account the convection of mechanical work by the mean flow. The starting point is to find an appropriate expression of the
energy flux through a boundary [9], using fluctuating stagnation enthalpy J′ and mass flow rate m′ as state variables. A
mathematical proof of the accuracy of such a choice for generalized acoustic field may be found in [20].

Defining first the total enthalpy J =CpT + 1
2 u2 and the mass flow rate m = ρu, the linearized isentropic fluctuating part

of these variables reads :

Ĵ =
p̂

ρ0
+u0û (23)

m̂ = ρ0û+u0ρ̂ with ρ̂ =
p̂
c2

0
(24)
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Fig. 2. Modulus of the reflection coefficient as a function of inlet Mach numer M1. Solid line: acoustical formulation. Dashed line: energetical

formulation.

Reformulation of Eqs. 23-24 with the plane wave expansion of the pressure (Eq. 6) and velocity (Eq. 7) leads to:

Ĵ = J++ J− =
A+(1+M)e jk+x

ρ0
+

A−(1−M)e− jk−x

ρ0
(25)

m̂ = m++m− =
A+(1+M)e jk+x

c0
− A−(1−M)e− jk−x

c0
(26)

The methodology to express in a general manner a boundary condition in the zero-Mach number framework is described
as follow:

1. The boundary condition must be prescribed first with energetic variables without neglecting the mean flow, defining then
a functional f (Ĵ, m̂, ŝ) = 0 linking the fluctuating variables Ĵ (total enthalpy), m̂ (mass) and ŝ (entropy). Expanded each
fluctuating quantity into waves (see Eq. 25, Eq. 26 and Eq. 8), the boundary condition is written under the form:

g(J+,J−,m+,m−,σ) = 0 (27)

2. When the computational domain is represented under the zero Mach number assumption, the functional f (Ĵ, m̂, ŝ) = 0
describing the boundary condition remains unchanged. However, the energetic variables Ĵ, m̂ and ŝ must be then
expressed at the limit when M→ 0. It comes:

Ĵ =
p̂

ρ0
m̂ = ρ0û ŝ = 0 (28)

As far as the waves are concerned, Eqs. 25 and 26 become when M→ 0 :

J+ =
A+e jkx

ρ0
, J− =

A−e− jkx

ρ0

m+ =
A+e jkx

c0
, m− =−A−e− jkx

c0
(29)



Thus, the functional relationship representing the boundary condition under the zero Mach number assumption becomes:

g
(

A+e jkx

ρ0
,

A−e− jkx

ρ0
,

A+e jkx

c0
,−A−e− jkx

c0
,0
)
= 0 (30)

As an illustration, this methodology is now applied to the boundary conditions used in the present study:

Boundary condition m̂ = 0 For that case, the functional f (Ĵ, m̂, ŝ) = 0 is m̂ = 0. Reformulating this condition using waves
J+, J−, m+, m− and introducing the limiting behavior when M→ 0 leads to :

m++m− = 0 (31)
A+

c0
− A−

c0
= 0 (32)

At the boundary where m̂ = 0, the input energetical reflection coefficient Re defined as the ratio between the reflected
wave A+ and the incident wave A− becomes Re = 1, which may be viewed as Re = Rac where Rac is the classical
acoustical reflection coefficient, which is +1 for û = 0. This result explains in a proper way the validity of û1 = 0 as a
choice for the input boundary condition in method A3.

Boundary condition p̂ = 0 Combining Eqs. 23 and 24 with p̂ = 0 leads to the functional f (Ĵ, m̂, ŝ) = 0:

Ĵ− u0

ρ0
m̂ = 0 (33)

Reformulating with waves and using the limiting behaviors Eq. 29 leads to :

(
J++ J−

)
=

u0

ρ0

(
m++m−

)
(34)

A+ (1−M) = −A− (1+M) (35)

At the boundary where p̂ = 0, the energetical reflection coefficient Re defined as the ratio between the reflected wave
A− and the incident wave A+ becomes Re =− 1−M

1+M which may be viewed as

Re =

(
1−M
1+M

)
Rac (36)

where Rac is the classical acoustical reflection coefficient, which is −1 for p̂ = 0. This latter result can be directly
applied to Eq. 19. Injection of Re into 18 leads to an energetical impedance which takes the form of a ratio between
stagnation enthalpy and mass fluctuations :

Ze =
ρ1

c1

Ĵ
m̂

(37)

The dashed line on Fig. 2 shows the evolution of |Re| as a function of inlet Mach number M1. As discussed in [18], the
reflection coefficient Re defined with the acoustical energy formulation is always equal or inferior to unity, suggesting that
the continuity of the energy at the control surface is respected.



Fig. 3. Configuration B investigated in section 3.

Computation of eigenmodes are now performed with Re instead of Rac. Results are presented in Table 2 under the
column A3*. Eigenfrequencies computed with a reflection coefficient based on the acoustic energy description are very
close to the ones computed with the reference methods (A0 and A1). As the real part of the frequency remains unchanged
whatever the choice of the formulation of R, it suggests that the absorption of acoustical energy is included only through the
formulation of the impedance. The small discrepancies between the reference solution and method A3 with Rac are related
to the length of the domain where the Mach number is neglected. Actually, it can be shown that the frequency tends to
the reference solution when lZ approaches x = 0. Such results demonstrate that the impedance must be prescribed under an
energetical form in order to obtain an appropriate representation of the whole configuration in the case where the domain is
computed under the zero Mach number assumption.

3 Accounting for entropy convection in a zero Mach mean flow
The acoustic waves generation when entropy inhomogeneities are accelerated in a non-uniform flow is a well known

phenomenon that has been extensively studied over the past decades. Early analytical investigations deal with the develop-
ment of the jet noise theory, extending the work of Lighthill to non-uniform density flows [6–8]. However these analytical
solutions were limited to low Mach number flows and focused on the derivation of a formulation for the far-field sound radi-
ation into free space by inhomogeneities swept out of nozzle orifice. In a different way, Marble and Candel [16] proposed a
one-dimensional theory based on the compact assumption (the nozzle dimensions are small in comparison with the shortest
wave length that appears in the flow field). The nozzle may be viewed as a duct discontinuity and simple relations between
upstream/downstream acoustic and entropy waves can be written. Validation of such a theory has been provided recently [21]
by comparisons with experiments.

The effect on thermoacoustic instabilities of the presence of a nozzle at the combustor exit is not obvious. As reviewed
by [22] some authors found no difference on the thermoacoustic modes of their combustor whatever the type of exit used,
while other authors [23] reported that a strong low-frequency instability occured when the open exit was replaced by a
chocked nozzle. As explained by [22], the behaviour of such an instability depends to the first order on the geometry.
The spatial dispersion of entropy fluctuations by the combustor aerodynamics [15] or the constructive/destructive phase
dependency [10] play an important role for the establishment of a coupling between acoustic and entropy modes.

The configuration depicted in Fig. 3 has been chosen in order to exhibit the presence of an entropy mode among acoustic
modes. A flame is located at x = x f , which constitutes an interface between cold gas and hot gas. A chocked nozzle is located
at x = L while the sonic throat where the Mach number reaches unity is located at x = xth. A similar methodology to the
previous section is employed by comparing three methods.

3.1 Method B0: Numerical reference method
Method B0 is strictly the same as method A0 presented above in section 1.1 [12]. Both the combustor and the nozzle

are computed. The thickness of the flame is 0.005 m.



3.2 Method B1: Global thermoacoustic model
Five equations are required to express the global thermoacoustic model. The flame is considered infinitely small, allow-

ing the integration of conservation equations Eqs. 1-3 over the discontinuity. At a first approximation and in the case where
the two connected ducts share the same cross section S, this leads to the following set of jump relations [2]:

ρ1û1 +u1ρ̂1 = ρ2û2 +u2ρ̂2 (38)

p̂1 +2ρ1u1û1 +u2
1ρ̂1 = p̂2 +2ρ2u2û2 +u2

2ρ̂2 (39)

CpT01 (ρ1û1 + ρ̂1u1)+ρ1u1
(
CpT̂1 +u1û1

)
= CpT02 (ρ2û2 + ρ̂2u2)+ρ2u2

(
CpT̂2 +u2û2

)
(40)

where Eq. 3 has been reformulated to express the total energy under a conservative form and the total unsteady heat release
has been neglected. The mean stagnation temperature is T0i = Ti+

1
2 u2

0i/Cp where the subscript i = 1,2 refers to cold and hot
gas, respectively.

The inlet and outlet boundary conditions form the last two equations that are closing the problem. At x= 0, the boundary
condition imposed is m̂1 = 0. As recalled by [21], the compact relation that models the supersonic chocked nozzle at x = L
reads :

û2(L)
c2
−
(

γ−1
2

)
M2

p̂2(L)
γP2

− 1
2

M2
ŝ2(L)
Cp

= 0 (41)

Using the usual plane wave expansions and Eqs. 38-41, the eigenfrequencies of the problem are computed by solving
det(M ) = 0, where M is the matrix :



M+
1 e jk+1 x f −M−1 e− jk−1 x f −M+

2
c1

c2
e jk+2 x f M−2

c1

c2
e− jk−2 x f M2

c1

c2
M+

1
2e jk+1 x f −M−1

2e− jk−1 x f −M+
2

2e jk+2 x f M−2
2e− jk−2 x f M2

2

M31 M32 M33 M34
M3

2
2

M+
1 −M−1 0 0 0

0 0 Tme jk+2 L −Tpe− jk−2 L −M2

2
e jks(L−x f )


(42)

M31 =
c1

c2

(
M+

1
[
M1 +1/(γ−1)+M2

1/2
])

e jk+1 x f

M32 =
c1

c2

(
M−1

[
M1−1/(γ−1)−M2

1/2
])

e− jk−1 x f

M33 = −
(
M+

2
[
M2 +1/(γ−1)+M2

2/2
])

e jk+2 x f

M34 = −
(
M−2

[
M2−1/(γ−1)−M2

2/2
])

e− jk−2 x f

with M+
1 = (1+M1), M−1 = (1−M1), M+

2 = (1+M2), M−2 = (1−M2), Tm = (1− γ−1
2 M2) and Tp = (1+ γ−1

2 M2)

3.3 Method B2: Delayed Entropy Coupled Boundary Condition approach.
Combining Eq. 11, Eq. 38 and Eq. 40, and taking the limit u→ 0 while the product u2ŝ remains finite [2], one obtains

the following expression for the entropy produced by the flame:



ŝ2(x f ) =−
Cp

2 (T02−T01)(γ−1)
u2c2

2

ρ1

ρ2
û1(x f ) (43)

Entropy fluctuations at the exit x = L may be analytically expressed by the addition of a time delay that mimics the mean
flow convective effect:

ŝ2(L) = ŝ2(x f )e jωτs with τs =
L− x f

u2
(44)

The methodology explained in the previous section is applied to Eq. 41, by reformulating this boundary condition thanks
to an energetical and isentropic functional f (Ĵ, m̂, ŝ) = 0. It comes :

m̂
(

c2 +1/2(γ−1)M2u2

(1−M2
2)

)
− Ĵ
(

ρ2M2 +1/2(γ−1)M2ρ2

(1−M2
2)

)
− 1

2
M2ρ2c2

2
ŝ2

Cp
= 0

Reformulating this equation by using waves and injecting the limiting behaviors Eq. 29 leads to :

A+

1+M2

(
1− 1

2
(γ−1)M2

)
− A−

1−M2

(
1+

1
2
(γ−1)M2

)
= 0

(45)

This condition handles properly the acoustic reflection that arises when a nozzle is connected to a domain computed
under the zero Mach number assumption. However it does not represent the entropy/acoustic coupling since σ was set to
zero in agreement with Eq. 29. This is the objective of the DECBC approach to model the effect of the accelerated entropy
fluctuations on the acoustics within the zero Mach number region. To this purpose, the modeled entropy at the domain exit,
Eq. 44, is injected into Eq. 45 while keeping the energetical form given by the functional at Eq. 45. Expressing û1(x f ) in
terms of waves A+

1 and A−1 allows us to write the following condition at x = L:

A+
1

[
βe jk1x f

]
−A−1

[
βe− jk1x f

]
+A+

2

[
(1− γ−1

2 M2)e jk2L

1+M2

]
−A−2

[
(1+ γ−1

2 M2)e− jk2L

1−M2

]
= 0 (46)

(47)

with β =
1
2

Cp
(T2−T1)(γ−1)

c1c2
e jωτs .

As in the previous section, the proper inlet boundary condition leads to A+
1 −A−1 = 0. Finally, the problem defined by

the matrix of Eq. 42 reduces to Eq. 48 :



e jk1x f

ρ1c1
−e− jk1x f

ρ1c1
−e jk2x f

ρ2c2

e− jk2x f

ρ2c2

e jk1x f −e− jk1x f −e jk2x f −e− jk2x f

1 −1 0 0

βe jk1x f −βe− jk1x f
(1− γ−1

2 M2)e jk2L

1+M2
−
(1+ γ−1

2 M2)e− jk2L

1−M2


(48)



Consistently with the no flow approximation, Mach numbers M1 and M2 do not appear in the first two rows which
describe the wave propagation within the cold and burnt gases.

3.4 Results
Thermodynamic parameters used in the computation of eigenmodes of the configuration B are presented in Table 3.

Table 3. Thermodynamic parameters for configuration B.

T1 P1 T2 γ r L x f xth

300 K 101325 Pa 1200 K 1.4 287 SI 1 m 0.5 m 1.087 m

Results are presented in Table 4 and Table 5. The Mach number M2 downstream of the flame is a free parameter driving
the system, which is computed directly by the equations with methods B0 and B1, and prescribed in the boundary condition
formulation with method B2. The behaviour of the real part of the first eigenfrequency computed with methods B0, B1
and B2 shows a strong dependency on the mean flow Mach number. The real part of the frequency is proportional to the
convective time delay of the flow, suggesting that this eigenmode is of entropic nature. The second eigenmode computed
does not present the same behaviour and the real part of the frequency is approximately the same whichever the method used
or the Mach number prescribed. As shown in section 2, the influence of increasing the mean flow velocity is to damp the
imaginary part, suggesting the presence of an acoustic eigenmode.

Table 4. Entropic eigenfrequencies computed with methods B0, B1 and B2.

M2 0.0125 0.1

B0 8.92−0.89i 67.30−5.99i

B1 9.36−0.80i 73.13−4.34i

B2 8.97−0.80i 73.65−4.11i

Table 5. Acoustic eigenfrequencies computed with methods B0, B1 and B2. The ∗ symbol refers to respective methods where the coupling

with entropy is neglected at the exit boundary condition.

M2 0.0125 0.1

B0 206.21+25i 178.04+10.57i

B1 211.67+5.04i 189.02+13.7i

B1∗ 211.14−2.28i 210.76−18.51i

B2 211.67+5.34i 192.27+18.63

B2∗ 211.14−0.82i 210.66−6.6i



A good agreement is found between analytical methods B1 and B2 and the numerical reference method B0, excepting
that this last one mispredicts the imaginary part of the eigenmodes and underpredicts the real part of acoustic eigenfrequen-
cies. Such discrepancies can be explained by the fact that method B0 solves the whole domain (the combustor plus the
nozzle), while methods B1 and B2 are limited by the low-frequency compact model which does not take into account the
length of the nozzle nor the phase shift between incoming and reflected waves [24]. However, such a simplified model shows
at the first order that the use of a DECBC is able to capture both entropic and acoustic eigenmodes and to predict them cor-
rectly, despite the fact that the mean flow is neglected during the computation of the domain. In order to illustrate the effect
of the coupling with entropy, methods B1∗ and B2∗ present the computation of eigenmodes with a purely acoustic boundary
condition, i.e. the coupling with entropy waves has been neglected in Eq. 41 (this means using Eq. 45 instead of Eq. 46).
Obviously the entropic mode does not appear in this case. The growth rate of the acoustic mode is significantly mispredicted,
suggesting that the coupling between entropy and acoustic fluctuations exhibit a strong unstable thermoacoustic mode, while
purely acoustic analysis shows a stable eigenmode.

Conclusions
The present study is devoted to the modelling of mean flow effect while computing thermoacoustic eigenmodes under

the zero Mach number assumption. It has been shown that:

• when the computational domain is represented under the no flow assumption, the acoustic impedance modelling a
compressor or a turbine must be prescribed under an energetical form rather than from the classical acoustic variables. A
systematic methodology is proposed to generate the proper reflection coefficient to impose given any physical boundary
condition written without the zero Mach number assumption.

• the coupling between entropy and acoustic waves at the entrance of a nozzle generates a low frequency eigenmode and
a shift of higher frequency modes that does not appear when the mean flow convective effects are neglected. Such
phenomena can be taken into account thanks to the proposed methodology where a zero Mach number formulation is
used together with a Delayed Entropy Coupled Boundary Condition.
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